Extensions 1→N→G→Q→1 with N=C5×C3⋊D4 and Q=C22

Direct product G=N×Q with N=C5×C3⋊D4 and Q=C22
dρLabelID
C2×C10×C3⋊D4240C2xC10xC3:D4480,1164

Semidirect products G=N:Q with N=C5×C3⋊D4 and Q=C22
extensionφ:Q→Out NdρLabelID
(C5×C3⋊D4)⋊1C22 = S3×D4×D5φ: C22/C1C22 ⊆ Out C5×C3⋊D4608+(C5xC3:D4):1C2^2480,1097
(C5×C3⋊D4)⋊2C22 = D5×D42S3φ: C22/C1C22 ⊆ Out C5×C3⋊D41208-(C5xC3:D4):2C2^2480,1098
(C5×C3⋊D4)⋊3C22 = S3×D42D5φ: C22/C1C22 ⊆ Out C5×C3⋊D41208-(C5xC3:D4):3C2^2480,1099
(C5×C3⋊D4)⋊4C22 = D30.C23φ: C22/C1C22 ⊆ Out C5×C3⋊D41208+(C5xC3:D4):4C2^2480,1100
(C5×C3⋊D4)⋊5C22 = D2013D6φ: C22/C1C22 ⊆ Out C5×C3⋊D41208-(C5xC3:D4):5C2^2480,1101
(C5×C3⋊D4)⋊6C22 = D2014D6φ: C22/C1C22 ⊆ Out C5×C3⋊D41208+(C5xC3:D4):6C2^2480,1102
(C5×C3⋊D4)⋊7C22 = D1214D10φ: C22/C1C22 ⊆ Out C5×C3⋊D41208+(C5xC3:D4):7C2^2480,1103
(C5×C3⋊D4)⋊8C22 = D5×C4○D12φ: C22/C2C2 ⊆ Out C5×C3⋊D41204(C5xC3:D4):8C2^2480,1090
(C5×C3⋊D4)⋊9C22 = D2024D6φ: C22/C2C2 ⊆ Out C5×C3⋊D41204(C5xC3:D4):9C2^2480,1092
(C5×C3⋊D4)⋊10C22 = D2025D6φ: C22/C2C2 ⊆ Out C5×C3⋊D41204(C5xC3:D4):10C2^2480,1093
(C5×C3⋊D4)⋊11C22 = D2029D6φ: C22/C2C2 ⊆ Out C5×C3⋊D41204+(C5xC3:D4):11C2^2480,1095
(C5×C3⋊D4)⋊12C22 = C2×C30.C23φ: C22/C2C2 ⊆ Out C5×C3⋊D4240(C5xC3:D4):12C2^2480,1114
(C5×C3⋊D4)⋊13C22 = C2×Dic3.D10φ: C22/C2C2 ⊆ Out C5×C3⋊D4240(C5xC3:D4):13C2^2480,1116
(C5×C3⋊D4)⋊14C22 = C2×D5×C3⋊D4φ: C22/C2C2 ⊆ Out C5×C3⋊D4120(C5xC3:D4):14C2^2480,1122
(C5×C3⋊D4)⋊15C22 = C2×D10⋊D6φ: C22/C2C2 ⊆ Out C5×C3⋊D4120(C5xC3:D4):15C2^2480,1124
(C5×C3⋊D4)⋊16C22 = C15⋊2+ 1+4φ: C22/C2C2 ⊆ Out C5×C3⋊D41204(C5xC3:D4):16C2^2480,1125
(C5×C3⋊D4)⋊17C22 = S3×D4×C10φ: C22/C2C2 ⊆ Out C5×C3⋊D4120(C5xC3:D4):17C2^2480,1154
(C5×C3⋊D4)⋊18C22 = C10×D42S3φ: C22/C2C2 ⊆ Out C5×C3⋊D4240(C5xC3:D4):18C2^2480,1155
(C5×C3⋊D4)⋊19C22 = C5×D46D6φ: C22/C2C2 ⊆ Out C5×C3⋊D41204(C5xC3:D4):19C2^2480,1156
(C5×C3⋊D4)⋊20C22 = C5×S3×C4○D4φ: C22/C2C2 ⊆ Out C5×C3⋊D41204(C5xC3:D4):20C2^2480,1160
(C5×C3⋊D4)⋊21C22 = C5×D4○D12φ: C22/C2C2 ⊆ Out C5×C3⋊D41204(C5xC3:D4):21C2^2480,1161
(C5×C3⋊D4)⋊22C22 = C10×C4○D12φ: trivial image240(C5xC3:D4):22C2^2480,1153

Non-split extensions G=N.Q with N=C5×C3⋊D4 and Q=C22
extensionφ:Q→Out NdρLabelID
(C5×C3⋊D4).C22 = C15⋊2- 1+4φ: C22/C1C22 ⊆ Out C5×C3⋊D42408-(C5xC3:D4).C2^2480,1096
(C5×C3⋊D4).2C22 = D20.39D6φ: C22/C2C2 ⊆ Out C5×C3⋊D42404-(C5xC3:D4).2C2^2480,1077
(C5×C3⋊D4).3C22 = C30.C24φ: C22/C2C2 ⊆ Out C5×C3⋊D42404(C5xC3:D4).3C2^2480,1080
(C5×C3⋊D4).4C22 = C5×Q8○D12φ: C22/C2C2 ⊆ Out C5×C3⋊D42404(C5xC3:D4).4C2^2480,1162
(C5×C3⋊D4).5C22 = C5×Q8.15D6φ: trivial image2404(C5xC3:D4).5C2^2480,1159

׿
×
𝔽